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A number of problems related to polytropic gas flows which arise when the walls of an 

infinite dihedral angle (planes PI and PJ filled with gas which at the initial instant was 
at rest, begin to move out from the gas at constant velocities is’1 and I’!! was solved in 
paper Cl]. The planes Pl and P,- play the role of pistons moving parallel to their origi- 

nal positions. It was shown that when the withdrawal velocity of these planes is suffici- 
ently high (in ‘comparison with the velocity of sound co in the gas at rest), then a zone 
of vacuum may arise at the edge of the dihedral angle (the piston intersection line). 
Solutions of these problems were derived from the domains of simple and double self- 
similar potential waves, and from the domains of constant motion. The subject of ana- 
lysis in [l] was in essence limited to the consideration of occurance of the vacuum zone, 
while the case in which the latter is absent, and a separation free flow is realized was 
not examined. 

In the following the analysis of the problem of two pistons moving out from a gas is 
largely completed with certain limitations as to the class of examined flows. It is shown 

that there exist three possible patterns of flows thus generated. 
1. An isentropic separation free potential flow occurs throughout the region of per- 

turbed motion with an area of constant flow at the dihedral angle edge which along a 

certain characteristic surface adjoins an area of unsteady potential double wave. 

2. Strong discontinuities (shock waves) appear at the angle edge, the flow ceases to be 
potential, and it becomes necessary to apply the class of two-dimensional self-similar 
flows (with variables Ei = zf / 1,I i = 1,2) with variable entropy. 

3. A vacuum region appears at the angle edge. In the perturbed area the equation of 
double waves is always of the hyperbolic type, and the solution can be found by the 
method of characteristics Cl]. 

The case of a high initial density gas (high velocity of sound c,,) and velocities 17~ and 
P, small as compared with co is considered in this paper. It has been possible to derive 
here an analytical solution of the problem of separation free flow, and to define the 
values of angle cx. (0 <a < rc / 2 , the angle between planes PI and p,,) for which a 

potential separation free fiow may occur. The obtained simplified equation provides a 
suitable model for the analysis of flow patterns at low velocities vi and I’,. 

In the case of the vacuum zone occurence the flow pattern singularities were investi- 

gated at the “vacuum-gas” boundary. 

1, Conditions of the problem do not contain parameters of the length dimension, hence 
the solution, i.e. functions I(~, u2 (velocity vector components) and the velocity of sound 

c will depend on two self-similar variables g1 = zl ! t and & = t2 / t, where z, are the 
Cartesian coordinates, and t is time. We write the system of equations defining the 
self-similar simple waves in the form [l and 83 

ur‘2 + u;= = 1 (Ui = u1 (6)) 

CIIL1’ + &’ - ‘ln (y - 1) 8 - u1u1’ - u1u; = 0 (0 = 2 (y - I)%) 

Here the prime denotes differentiation with respect to 0 and y is t’ne adiabatic 
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exponent in the equation of state 
p = aspy (as = conat) 

Here p is the pressure and p is the density. 
For double potential waves we have [l and 33 

‘1, (Y - i) 0 I(i - W) 0, + 2Ws%, + (1 - V) %,I + 

+ ‘/*(y - 3) (W + W) + 2 = 0 (1.2) 

The analysis is carried out simultaneously in the hodograph plane of velocities us, ud 

(in which Eq. (1.2) is solved) and in the plane of self-similar variables E,, &. 

It was stated in [l] that at low velocities Vi and V, when the flow pattern is free of 
separation, a line of parabolicity appears in the solution of Eq. (1.2) of double waves 
in the hodograph plane, beyond which there is an area of this equation ellipticity OCCU- 
pying a certain neighborhood of point 

0’ (- Vl, -(VI co9 CL + V,) / sin a) 

These results were obtained numerically. However more thorough investigations (in 
particular by increasing the number of computation points along each of the character- 

istics in order to decrease the computation error) had shown that the region of the hodo- 
graph plane bounded by a line along which R* = &2 + 6,* - 1 = 0 is so small that it 
may be taken as being the point 0’: The region corresponding to it in the Elf, plane 
remains nevertheless fairly large. Calculations had shown that the characteristics of 
Eq. (1.2) tend to converge at point O’, and that the values of functions 0; at point 0’ 

depend on the direction of approach to that point, i.e. functions 8, and 0, at point 0’ 

are multiple-valued [4J. 
It may therefore be assumed that in the case of occurance of a separation free flow 

the double wave type of flow adjoins along a certain line in the &I& plane a flow with 
constant parameters ; this corresponds to point Ci’ in the hodograph plane. 

The problem of junction of the double wave type of flow to the region at rest was 
investigated in paper .[5] in which the singularities of solutions of Eq, (I, 2) in the vici- 
nity of the junction line were also explained, The results obtained in [5] may be readily 

extended to the case of a double potential wave adjoining a constant flow. 
In order to establish the multivalence of Or and 6,at point O’,we pass over in Eq. 

(1.2) to new variables, putting 

u1==0c0sq-Vl, % = 6 sinq - fVl cos a + V,) I sin cn (1.4) 

In the new coordinates the line segment 6 = 0 along which 8_ - 0, 8, = i corre- 
sponds to point 0’. and the system of equations of the double wave takes the form 

el=acoscp-v,+~e(~~,,‘P--Bps~) 
FL=& sin cp- 

V1 Co3a +V, 
sin a -+-?$ ( 8 8, sin cp + 0, ‘F 

> 
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two methods whenever a separation free flow pattern was realized. 
The pattern of separation free flow for the case of r= 3, a= 1/2~, VI = V, = 0.4 is 

shown on Fig. 1 and 2 in the uluy and the k,$, p lanes respectively. The notations on 
Fig. 2 are : - 1 for regions of constant flow, 2 for regions of simple waves, and 3 for 
regions of double waves. On Fig. 1 lines D’P’, Dl’l)‘, ,YD’, E’D,;l”l{‘, l)‘lri’, X'L', RI'L; 
L'C', L'G,' correspond to regions denoted by 2, and points P’, R’, 11,‘. I,‘, 0’ to those 
denoted by 1. Thus for example, region DCNP corresponds to line D’r’ , and region 
PNKNl to point P’ . (Points on Fig. 1 are denoted by the same letters as on Fig.2. but 

with a prime). 
Fig. 3 shows the behavior of characteristics (in 6, cp coordinates) derived by the method 

of numerical integration of Eq. (1.2) in region I,‘G’O’&‘(Fig. 1). (The scale along the 
08 -axis has been increased tenfold). Characteristics (1.8) drawn through point L’( lines 

L'C" and L'Cl") are also shown for the sake of comparison. 

Fig. 3 

Note 1. 1 . It is not possible to effect a direct junction of the constant motion to 
the double wave right at the beginning avoiding the construction of simple waves. In 
order to realize such a junction it would be necessary for a parabolic degeneration of 

Eq. (1.2) to be present and, furthermore, in accordance with the results of [S] the density 
of the double wave type of flow must increase with increasing distance from the conti- 

guity line. If (1.2) in the neighbornhood of the degeneration line is of the hyperbolic 

type, then it is impossible to satisfy these 
two conditions right at the beginning. 
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Fig. 4 Fig. 5 

2. Numerical calculations have shown that the occurance of separation free flows at 
low velocitites VI and V1 examples of which were adduced in the preceding Section is 
very rare, and obtains for certain specific relationships between angle a and velocities 
1’1, I’, only. In the derivation of the specific algorithm for the construction of flows at 

low I’, and I’, we obtain, as a rule, a nonunique congruence of sets of pairs (61, &,) and 
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(~1, u2) corresponding to the flow and, moreover, the characteristics extend in the hodo- 
graph plane beyond the natural region of flow definition (e. g. beyond the rectangle 

- Vld ~1 B’o, -Va<+(O when a= n / 2). This fact is not accidental, and is 

not related to errors of numerical calculations. 

Let us consider the particular case of a and Y bound by the relationship 

(the case of the so-called compatible a and y [4]). 
We shall give a strict proof of the occurance at specific values of V of the superposi- 

tion in the hodograph plane of regions corresponding to different regions in the El& plane 
(Vr=Vz=V). 

Fig.4 and 5 show respectively in the u I u I and the EISz planes a solution obtained 

numerically for 3 = r&r, y -= 3, V = 0.1, 0, = 1 with superposition of regions in the 

hodograph plane. We shall use the notations of Fig. 4 and 5, and assume 0 <a < r/,n 
(for such a the pattern remains qualitatively valid). 

In the case of (2.1) the equation of the simple and double wave contiguity curve ED 
is of the form [l] 

(2.2) 

i.e. ED is a straight line along which Or = 1, 0, = ctgr/,a, 

Similar formulas hold for curve ED,, i. e. the solution of Eq. (1.2) in area EDPDl 
may be written in the form 

0 = u1 + ctg lllaul + 00 (2.3) 
Riemann waves of the form 

Z&i = - cosa (0 -080+Vtgact.gg’/,a), u,=sini~(O--0~-+V) (2.U) 

adjoin area EDPDl through the characteristic DP , and correspondingly 

Ur = 0 -bbo +Vsinactgr/,a, us = - V sin a (2.5) 

through the characteristic DIP. 
From (2.4), (2.5) we have 8 = 0, - 2V at point P’ , i.e. a vacuum zone appears in 

the region 6DFDl, when V > O. / 2, Let V < 9, I 2. We shall determine the velocity 
V at which a superposition of regions O’P11 and UI’P’X1’ will occur. The slope of the 

bisectrix O’E’ is equal to c lg rip CL, and the corresponding coefficient for the characteris- 
tic P’ll at point I” is found from the relationship 

drc, 

( > 

0102 - .1/U,” + (1.T - 1 
dul P’ = 

where Oj are to be taken at point N. 
i - oza * 

For the characteristic P’R’ to lie below O’E’, i.e. for the occurrence of a superposi- 
tion of regions D’P’R’ and Dl’P’Rz’the inequality 

dua ( > F& p,--tg a==b ctg; 
2 [-cosu(b + cm a2-a l/p)r>O 

~(~~-7”‘7-1’~t b=&sinP $-+*__I (2.6) 

must be fulfilled. 
By virtue of (2.1) 

b + 
Yn (T-1)’ 

cos a co8 ‘/,a =(~+I)(d-y)+i>O 

In order to satisfy inequality (2.6) it is necessary for 6 <0 which is possible when 
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i < Y < 2, i.e. when l/s n <a < l/,n. In this case the piston withdrawal velocity satisfies 
inequality l-B -- V<OU;! -_U-v* 

( i 

(y--l) ’ WY) ’ B = 37 - 5 i_ (3 - #l’ 
r ] ) (2.7) 

in particular for y = i,4 a = arc cos 0.2, V* z 6.63 6,. 
Thus, if inequality (2.7) is fulfilled, the mapping of the neighborhood of point P’ of 

the hodograph plane onto the physical space is nonunique. 

It is shown on Fig. 4 that in the numerical solution of the mixed problem of Eq. (1.2) 
point R’ of characteristicP’I<’ in the region D’P’R’ moves beyond the natural domain 
of flow determination, i.e. the square O’D’E’D1’. The velocity vector component 1% 
along the piston wall CO (Fig. 5) cannot be in this case monotonic (at point Ru, < - 0.1, 

hence a compression wave must appear along CO , and the flow ceases to be potential 
and isentropic. 

Note 2.1. If one considers the problem of piston withdrawal at arbitrarily variable 
velocities (with zero acceleration at t = 0) and looks for a solution in the class of non- 
self-similar double waves, one finds as a rule that it is impossible to derive for this class 
a solution free of singularities. Apparently, as in the self-similar case weak shock waves 

may form at the angle vertex. 

Note 2.2. It is always possible to derive a solution in the class of self-similar double 
potential waves when the angle between the withdrawing pistons is a > r/2~, but only 
with sufficiently high velocities V, and V, when there is an outflow of gas into vacuum. 
In the case of low V, however it is generally impossible to find in this class a solution 

free of singularities. (In particular, when one of the planes remains stationary, a weak 

shock wave is bound to appear in the neighborhood of the dihedral angle edge). 

Fig. 6 

9, The majority of results adduced above were 
obtained by solving Eq. (2.1) numerically. The 
derivation of analytical solutions of Eq. (2.1) even 
for certain regions only is very difficult due to its 
nonlinearity. It is of interest to attempt a simpli- 
fication of this equation by imposing certain limi- 
tations on the physical content of the problem so 
as to obtain a simplified equation which would 
permit an analytical solution of the Goursat and 
of mixed problems with boundary conditions appro- 
priate to the problem of two pistons considered. 

It appears that this can be done in the case of a 
“heavy” gas and low VI and V, when a vacuum 

zone is not generated. In. that case the basic qual- 
itative properties of separation free flows enumer- 
ated in Sections 1 and 2 are retained, while the 
quantitative results derived with the aid of the 
simplified equation are in good agreement with 
those obtained from Eq. (1.2) by the method of 

characteristics (see, e. g. Fig. 6 where the simpli- 
fied solution is shown by dotted lines, and that of 

(1.2) by solid lines). 
We shall consider a “heavy” gas of high initial 
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density 0,s 1 at VI<&, :‘p < &, under the conditions of our problem. Variations of 
the velocity of sound throughout the flow area will not be great with low Ill andv,,and 
it may be assumed that everywhere 0 s i . As the region of variation of 81, E,is bound- 
ed, it may be assumed in accordance with (1.3) that 9,, 9* are bounded, and the magni- 

tude 11 = 1% (Y - 3) (9? + fJ,o) + 21 / ‘/t (y - 1) 9 

is small throughout the flow area. 

Hence the term q- in (1.2) after the latter had been divided by (y - i) 8 / 2 may be 
neglected, and the simplified equation is then reduced to the form 

(i - ora) e,, .+ 2819191, + (i - 9,*)e,, = 0 (3.1) 

Equation (3.1) has solutions of the form 

u = =1u1 + 42u2 + =3 

where a; are arbitrary constants, It appears that all necessary solutions of the mixed and 
of the Goursat problems are of this form. 

In the following those regions of the hodograph plane in which the Goursat problem 
is solved will be called regions of the G type, and those containing mixed problem solu- 
tions of the S type (e. g. on Fig. 6 region E’D’P’&’ is of the C type, while region 

D’P’R’is of the S type). 
Theorem. If the angle between pistons PI and P,is a E (0, l/,n) (piston PI corre- 

sponds to L = - v,), v,, I’, < eoJ then a separation free flow without singularities may 
be derived with the aid of Eq. (3.1) (in the class of entropic potential flows) only for 

a = JC / k; k = 1, 2, 3, . . . (3.2) 

For odd h the flow region becomes closed following solutions 1/s (k - !) of C type 
problems, and (k -_ 1) of problems of the s type, while for even k it. is closed after 

solutions $k of G type problems, and (k - 2) of those of the 8 type. 
In the nth region of the G type 

8= 
sin l/*a cos ‘/a u 

sin (M - l/*) U1 + sin (nr. - l/*4) ua $- Rn 

In the S type regions contiguous with pistons PI and Pr we have respectively 

(3.3) 

(3.4) 

(3.5) 

(sin l/p)* + 2 cos l/oar sin l/,na sin [l/r (n - 1) al 2n - i 
2 sin l12r sin (nz - 1/1 a) -- 2 I (3.6) 

R,,=~o-VV1 (3.7) 
R in =eo-vv,- 

4 (VI sin [l/, (n - 2) al co9 [l/o (n + 2) a] + V,, sin [l/a (n - 1) a] co9 [l/a (n + i) 21) 

Bin na 

(n > 2; i - i,2) (XR) 

We shall prove the Theorem. At a certain distance from the pistons the Riemann waves 

Q- -coscs(~-~,~, up= sina(8 --OJ @*Q) 

861 - 9 - 90, 4-0 (3.10) 
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are generated which interact in regions of the C type bounded by charcteristics. Using 
(3.9) and (3.10) as the conditions along the characteristics D’E’ and Dl’E’ (Fig. 6) and 
the equation of the characteristic strip of (1.3), we obtain in the C, region 

6= a+ctg1/sau,+8, 

Area C, adjoins the regions of double waves of the S type through simple waves D’P’ 

and Dl’P: Values of 9 along the characteristics and the relationship between 0, and 6, 
defined by the condition of absence of flow through the wall which are required for the 
computation of these are known 

61 = 0 in D’, Blms a - 0, sin a = 0 in D1’ 

Solutions of the mixed problem are of the form: 
. . 
in region S,, 

6 = cseau, + O0 - I/r 
in region S,r 

e= ur+ctgau,+e,--~ 

Hence for n = 1 the relationships (3.3)-(3. 8) are fulfilled. By induction we readily 
conclude that Formulas (3.3)-( 3.7) hold for any n. 

If in a G type region the parabolic degenration 

era + 13~2 = csc2 (na - ‘/%a) = 1, or na = ‘/G + ‘/,a 

a = sr / (2n + I) = n / k, k=h+i, n>,z 

of Eq. (3.1) occurs, then region C, degenerates into a line, the characteristics merge, and 
their slope coincides with that of the bisectrix of angle a 

In the hodograph plane we have two regions of the S type joining along the bisectrix. 
In the physical plane the picture is completed by plotting the simple wave adjoining the 

region of constant motion, and extending up to the lines of piston intersection with the 

level lines perpendicular to the angle bisectrix. 
If in the region of S type 

o,a -I- 0,” - I / sir? na = 1, a :- n I 2n = n 1 k, k = 211 

then the Sir, regions degenerate into lines coinciding with walls 1’1 and P, respectively. 
In the hodograph plane the picture is completed by a C type region. In the physical 
plane we obtain two simple waves the level lines of which extend from the bisectrix per- 
pendicularly to Pr and P,. 

It is clear from geometrical considerations that when a does not satisfy (3.1) the char- 
acteristics C, , or s;,, extend beyond the boundaries of the natural flow region, and a solu- 
tion free of singularities cannot be derived. The Theorem is proved. 

4. At velocities irl and VZ comparable in modulus to 6, , but exceeding certain criti- 
cal velocities, a vacuum zone appears in the flow. Problems of this kind were analyzed 
in detail in Cl]. We shall establish a new family of such flows in the neighborhood of 
the “vacuum -gas” line. We shall namely prove that with certain natural restrictions the 

form of the “vacuum - gas” boundary is the same in both the hodograph and the $1 El 
planes. 

To establish this property it is sufficient in accordance with (1.3) to prove that 
lim 66, = 0 when 6 -+ 9, ([ = i,2). This statement is obviously true when 6, are finite 
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for 6 = 0 (this obtains, e. g. in the case of compatible a and Y). 
We shall assume that 6, -. ~0 when 6 -. (1, Let curve 11, = f(uJ in the hodograph 

plane correspond to H = 0. We shall consider narrow strip 1. along this line in which 
6 C 10, E] (E is small), and in which lie curves u1 = cp (I(*, &) of 6 constancy (6 ~7 r.), 
where cp is twice continuously differentiable with respect to 14~. We shall assume that in 
the corresponding strip L’in the g1j, plane along the “vacuum-gas” curve 60, = 

= F, (%,iQ > 0 when 6 = E, where Ft are continuously differentiable with respect to 

US (E E IO, el), E = 0 corresponds to the “vacuum-gas” line 111 = f (I+J ; on Fig. 6 this 
is curve AB, and in the El& plane curve All?. The boundedness of Ft follows from the 

boundedness of flow region in the &,Ep plane. 
We shall further assume that inequalities 9’ < 0, p” < 6 are fulfilled in L (the 

prime denotes differentiation with respect to uZ), i.e. curves of 6 constancy are convex 
upwards for any & . We shall furthermore assume that f, /‘, f”, Fi (I+, 0) and T, Q’, o”, 

Fi differ correspondingly in L by the magnitude 0 (e). 
Differentiating 6 twice along curve ul = q~ (‘la, E) , we obtain the conditions 

81 + qY0, = 0 (4.1) 

e&a + 281,(F’ + 6,? + 6S” = 0 ((1.‘)) 

After substitution of I& from (4.2) we reduce Eq. (1.2) with the help of (4.1) to the 

form ‘/* (y - 1) 8 ierr +-eZ2 + 6,39fl’i + 11~ (v - 3) ela (i + p) + 2 = 0 (4.3) 

Differentiating equality Ml1 = F1 (uo, 5) along U, = CJ (u,, E;) and solving the derived 

relationship with respect to 6% we obtain with the aid of (4.2) 

eel1 = ‘3 .; (2VF1 + eop4q --.oo+py (6.4) 

Substituting 6011 from (4.4) into (4.3) and neglecting in (4.3) magnitudes of the order 
of 0 (e) as compared with 0 (1) and magnitudes of the order of 0 (i) as compared with 
fl12 + eSa, we finally obtain the approximate equation to which (1.2) is reduced in L 

We fix a certain straight line u1 = cl = const and integrating along it Eq. (4.5) from 
ua to uf*, where (cl,ul*) lies on curve 6 = e and (~1, US) within L 

N* dOt s --+~~~_~A(u*)$?_~ (4.0) 

=I u,* UI 

Applying to the last term of (4.6) the generalized mean value theorem, and integra- 

ting we obtain ln ea + s ln 6 _ A+ ln 6 = ln C 6(12 = CO”‘+2’(“-‘) + 0, fO1 0 - II 

because A* = A (~10) 2 0 (ua < ~~0 < I+*), C = const. In this case clearly also 
Of& + 0 when I3 -_* 0, i.e. curve & = ui in the g,%, plane corresponds to line u1 = f (I+). 

Critical velocities V* (a vacuum zone does not occur when V < V+ ) were calculated 

for the case of Vr = V, = V witha=11,n,y=1.4andy=2(in[l] V*=O.42 for 

a = l/%X, ‘y = 3) was cited), and the obtained results are as follows: 

V* s 2.29 (a = 1/1rc, y = 1.4). V+ S 0.88 (a = rlln, y = 2) 

N o t e 4.1. Along a vacuum line Bi may be either finite, or infinite. However, as fol- 
lows from (1.2), already the second derivatives will necessarily tend to infinity for v > 3. 
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VARIATION OF GAS VELOCITY IN A NORMAL IONIZING 

SHOCK WAVE AND TEE PROBLEX OF THE CONDU~TI~ PISTON 
PMM Vol. 32. N5, 1968, pp. 954-956 

A. A. BARMIN 

(Receive:?%?;) 1968) 

The variation of gas velocity in an ionizing shock wave propagating along an initial 
magnetic field (a normal ionizing wave), when the gas ma~etic,viscosi~ is considerably 
greater than the remaining dissipative coefficients , is investigated in this paper. 

Obtained results are used for the derivation of solution of the problem of motion of a 
conductive piston. Similar investigations in which the wave front orientation with respect 
to the magnetic field was arbitrary, were the subject of paper [I]. 

An analysis of the limit case of normal ionizing shock waves is of interest in view of 
the numerous experimental investigations of such waves (2 and 31. and also due to the 
presence of a number of singularities in its solution as compared with the general case. 
Variations of the magnetic field profile, of density and other parameters in a supersonic 
normal ionizing shock wave and in the subsequent MHD rarefaction wave were computed 
in paper [a] in connection with the problem of discharge. It was assumed there that in a 
varying magnetic field the ionizing wave becomes an ionizing Jouguet wave. It will be 
shown in the following that this assumption is correct. 

In the case of normal ionizing waves here considered the flow is a plane one, i. e. the 

gas velocity and the magnetic field lie in one and the same plane drawn through the 
normal to the wave front. We introduce the system of coordinates z, y, z with the x- 
axis directed along a normal to the wave, and the magnetic field component behind the 
wave if,, = 0. Let in this coordinate system u, and u be the velocity variations along 

the z - and w-axes. 
In the case under consideration intermediate ionizing shock waves are absent, i. e. out 

of the five wave types [S] three only are possible, viz. supersonic fast, supersonic and sub- 
sonic slow ionizing waves. In supersonic ionizing waves the magnetic field, and conse- 
quently also the gas velocity tangent component do not vary. In the uo-plane points 
lying along the u-axis to the right of u’ correspond to a fast wave. 


